MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) The value of ΔH° for the reaction below is -72 kJ. _____ kJ of heat are released when 1.0 mol of HBr is formed in this reaction.
- 1) _____

 $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$

- A) 0.44
- B) -72
- C) 72
 - D) 144
- E) 36

2) The enthalpy change for the following reaction is -483.6 kJ:

2)

 $2H_{2}(g) + O_{2}(g) \rightarrow 2H_{2}O(g)$

Therefore, the enthalpy change for the following reaction is _____ kJ:

$$4H_2(g) + 2O_2(g) \rightarrow 4H_2O(g)$$

- A) 483.6

- B) 967.2 C) -483.6 D) 2.34 × 10⁵
 - E) -967.2

3) Calculate ΔH° (in kJ) for reaction 3.

3) ____

- 2S (s) + $3O_2$ (g) \rightarrow 2SO₃ (g) $\triangle H = -790 \text{ kJ}$
- $S(s) + O_2(g) \rightarrow SO_2(g)$
- △H = -297 kJ

the enthalpy of the reaction in which sulfur dioxide is oxidized to sulfur trioxide

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

is _____ kJ.

- A) 196
- B) -543
- C) -1384
- D) -196
- E) 1087

4) Given the data in the table below, ΔH°_{TXN} for the reaction

$$Ca(OH)_2 + 2H_3AsO_4 \rightarrow Ca(H_2AsO_4)_2 + 2H_2O$$

is _____ kJ.

Substance	ΔH _f ° (kJ/mol)
Ca(OH) ₂	-986.6
H ₃ AsO ₄	-900.4
Ca(H ₂ AsO ₄) ₂	-2346.0
H ₂ O	-285.9

- A) -744.9
- B) -4519
- C) -130.4
- D) -76.4
- E) -4219

5) Which of the following is a statement of the first law of thermodynamics?

5) _____

- A) A negative ΔH corresponds to an exothermic process.
- B) $\Delta E = E_{final} E_{initial}$
- C) Energy lost by the system must be gained by the surroundings.
- D) 1 cal = 4.184 J (exactly)

E)
$$E_k = \frac{1}{2} m v^2$$

6) For a given process at constant pressure, ΔH is negative. This means that the process is

6) _____

- A) endothermic
- B) energy
- C) a state function
- D) equithermic
- E) exothermic

7) In the reaction below, ΔH_f° is zero for ______.

7)

Ni (s) + 2CO (g) + 2PF₃ (g)
$$\rightarrow$$
 Ni(CO)₂(PF₃)₂ (l)

- A) CO (q)
- B) Ni(CO)₂(PF₃)₂ (I)
- C) Ni (s)
- D) PF₃ (g)
- E) both CO (g) and PF₃ (g)

Thermodynamic Quantities for Selected Substances at 298.15 K (25°C)

Substance	ΔH°_{f} (kJ/mol)	ΔG°_{f} (kJ/mol)	S (J/K-mol)
Calcium			
Ca (s)	0	0	41.4
CaCl ₂ (s)	- 795.8	-748.1	104.6
Ca ₂ + (aq)	226.7	209.2	200.8
Chlorine			
Cl ₂ (g)	0	0	222.96
CI- (aq)	-167.2	-131.2	56.5
Oxygen			
O ₂ (g)	0	0	205.0
H ₂ O (I)	-285.83	-237.13	69.91
Phosphorus			
P ₂ (g)	144.3	103.7	218.1
PCI ₃ (g)	-288.1	-269.6	311.7
POCI ₃ (g)	-542.2	-502.5	325
Sulfur			
S (s, rhombic)	0	0	31.88
SO ₂ (g)	-269.9	-300.4	248.5
SO ₃ (g)	-395.2	-370.4	256.2

8) The value of ΔS° for the oxidation of solid elemental sulfur to gaseous sulfur trioxide,

2S (s, rhombic) +
$$3O_2(g) \rightarrow 2SO_3(g)$$

$$D) - 493.1$$

9) The value of ΔH° for the oxidation of solid elemental sulfur to gaseous sulfur trioxide,

$$2S(s, rhombic) + 3O_2(g) \rightarrow 2SO_3(g)$$

is _____ kJ/mol.

10) The value of ΔG° at 25 °C for the oxidation of solid elemental sulfur to gaseous sulfur dioxide,

10) _____

$$S(s, rhombic) + O_2(g) \rightarrow SO_2(g)$$

is _____ kJ/mol.

- A) +300.4
- B) +395.2
- C) -269.9
- D) -300.4

E) +269.9

11) Consider the reaction:

11) _____

$$NH_3(g) + HCI(g) \rightarrow NH_4CI(s)$$

Given the following table of thermodynamic data at 298 OK:

Substance	ΔH_{f}° (kJ/mol)	S° (J/K · mol)
NH ₃ (g)	-46.19	192.5
HCI (g)	-92.30	186.69
NH ₄ CI (s)	-314.4	94.6

The value of K for the reaction at 25 °C is ______.

- A) 1.1×10^{-16}
- B) 8.4×10^4
- C) 9.3×10^{15}
- D) 150
- E) 1.4×10^{8}

12) A reaction that is spontaneous as written _____.

12) _____

- A) will proceed without outside intervention
- B) is very slow
- C) has an equilibrium position that lies far to the left
- D) is very rapid
- E) is also spontaneous in the reverse direction

13) Which one of the following is always positive when a spontaneous process occurs?

13) _____

- A) $\Delta H_{surroundings}$
- B) ΔS_{system}
- C) $\Delta S_{surroundings}$
- D) $\Delta H_{universe}$
- E) ΔSuniverse