MULTII	PLE CHOICE. Choose	the one alternative	that best completes	the statement or an	swers the questi	on.	
1	1) A sample of gas (24.2 g) initially at 4.00 atm was compressed from 8.00 L to 2.00 L at constant temperature. After the compression, the gas pressure was atm.						
	A) 2.00	B) 4.00	C) 8.00	D) 16.0	E) 1.00		
2	2) A gas originally at 27 °C and 1.00 atm pressure in a 3.9 L flask is cooled at constant pressure until the temperature is 11 °C. The new volume of the gas is L.						
	A) 3.9	B) 3.7	C) 4.1	D) 0.27	E) 0.24		
3) The density of chlori	ne (Cl2) gas at 25 °C a	and 60. kPa is	g/L.		3)	
	A) 20	B) 4.9	C) 0.86	D) 0.58	E) 1.7		
4	e) The Mond process protection tetracarbonyl:	roduces pure nickel i	metal via the therma	l decomposition of r	nickel	4)	
	Ni ^{(CO)4} (l) -	→ Ni (s) + 4CO (g).					
	What volume (L) of 0 torr and 22.0 °C?	CO is formed from th	ne complete decomp	osition of 444 g of N	i ^{(CO)4} at 752		
	A) 63.7	B) 0.356	C) 20.2	D) 255	E) 11.0		
5	⁵⁾ What volume (L) of M according to the follo Mg3 ^{N2} (s) +	N ^{H3} gas at STP is pr wing reaction? - 6 ^{H2} O (l) → 3Mg ^{(l}	oduced by the comp ^{OH)2} (aq) + 2N ^{H3}	olete reaction of 7.5 g (g)	g of ^{H2} O	5)	
	A) 0.32	B) 3.1	C) 19	D) 9.3	E) 28		
6	6) The pressure in a 12.2 L vessel that contains 2.34 g of carbon dioxide, 1.73 g of sulfur dioxide, and 3.33 g of argon, all at 42 °C is mmHg.						
	A) 134	B) 395	C) 116	D) 0.347	E) 263		
7	7) Sodium hydride reac gas:	ts with excess water	to produce aqueous	s sodium hydroxide	and hydrogen	7)	
	H NaH (s) + A sample of NaH we when the hydrogen i 28 torr. A) 2.93	^{I2} O (l) → NaOH (ac sighing g s collected over wate B) 925	q) + ^{H2} (g) will produce 982 m er. The vapor press C) 0.960	L of gas at 28.0 °C ar are of water at this te D) 0.0388	nd 765 torr, emperature is E) 0.925		
8	B) Of the following, A) $\frac{V}{P}$ = constant B) $\frac{V}{T}$ = constant	is a correct s	statement of Boyle's	law.		8)	
	D) $\frac{P}{P} = \text{constant}$						

E) $PV = constant$		
9) Of the following,	is a valid statement of Charles' law.	9)
A) <u>V</u>		
T = constant		
= constant		
B) $V = \text{constant} \times F$		
C) $V = \text{constant} \times n$		
$D) \frac{T}{T}$		
= constant		
E) $PV = \text{constant}$		
10) Which one of the following	g is a valid statement of Avogadro's law?	10
A) $V = \text{constant} \star n$		
B) $PV = \text{constant}$		
C) V		
$\frac{1}{T}$		
= constant		
$D) \frac{1}{T}$		
= constant		
E) $V = \text{constant} \times P$		
11) Standard temperature and	pressure (STP), in the context of gases, refers to	11
A) 273 K and 1 pascal		
B) 298 K and 1 atm		
C) 273 K and 1 atm		
D) 298 K and 1 torr		
E) 273 K and 1 torr		
12) The average kinetic energy	of the particles of a gas is directly proportional to	12
A) the square root of the	rms speed	
B) the rms speed		
C) the square of the rms	speed	
D) the particle mass		
E) the square of the part	icle mass	
13) Which of the following is r	not part of the kinetic-molecular theory?	13
A) Attractive and repuls	ive forces between gas molecules are negligible.	
B) Atoms are neither cre	eated nor destroyed by ordinary chemical reactions.	
C) Collisions between g	as molecules do not result in the loss of energy.	
D) Gases consist of mole	ecules in continuous, random motion.	
E) The volume occupied	by all of the gas molecules in a container is negligible compared to	
the volume of the cor	ntainer.	
14) Of the following gases,	will have the greatest rate of effusion at a given temperature.	14
A) C ^{H4} B) H	HBr C) _N H3 D) HCl E) Ar	
		4 =

- B) the molecular attractions between particles of gas decreases the pressure exerted by the gas
- C) molar volumes of gases of different types are different
- D) gas particles have non-zero volumes and interact with each other
- E) all of the above statements are true

Free response-

If 25 grams of potassium carbonate is reacted with 100 ml of .500 M hydrobromic acid in a 2.40 L vessel at a temperature of 20.00* Celsius and a pressure of 752 torr-

• How many liters of CO₂ will be created? Assume the vapor pressure for water at 20* Celsius is 22.34 torr.

- If the pressure was increased after the reaction had come to completion what would happen to the amount of water in the vessel?
- Give the net ionic equation for the reaction-

Cover both of the free response questions in the brown book.

- 1) D 2) B 3) E 4) D 5) B 6) E 7) E
- 8) E
- 9) A
- 10) A
- 11) C
- 12) C
- 13) B
- 14) A
- 15) E