Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Chapter 16 Acids and Bases

John D. Bookstaver
St. Charles Community College
St. Peters, MO
© 2006, Prentice Hall, Inc.

Some Definitions

- Arrhenius
>Acid: Substance that, when dissolved in water, increases the concentration of hydrogen ions.
>Base: Substance that, when dissolved in water, increases the concentration of hydroxide ions.

Some Definitions

- Brønsted-Lowry
>Acid: Proton donor
>Base: Proton acceptor

A Brønsted-Lowry acid...
...must have a removable (acidic) proton.

A Brønsted-Lowry base...
...must have a pair of nonbonding electrons.

If it can be either...

...it is amphiprotic.

$\mathrm{HCO}_{3}{ }^{-}$ $\mathrm{HSO}_{4}{ }^{-}$ $\mathrm{H}_{2} \mathrm{O}$

What Happens When an Acid Dissolves in Water?

- Water acts as a Brønsted-Lowry base and abstracts a proton $\left(\mathrm{H}^{+}\right)$from the acid.
- As a result, the conjugate base of the acid and a hydronium ion are formed.

Conjugate Acids and Bases:

- From the Latin word conjugare, meaning "to join together."
- Reactions between acids and bases always yield their conjugate bases and acids.

Acid and Base Strength

- Strong acids are completely dissociated in water.
$>$ Their conjugate bases are quite weak.
- Weak acids only dissociate partially in water.
$>$ Their conjugate bases are weak bases.

Acid and Base Strength

- Substances with negligible acidity do not dissociate in water.
> Their conjugate bases are exceedingly strong.

Acid and Base Strength

In any acid-base reaction, the equilibrium will favor the reaction that moves the proton to the stronger base.
$\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\Omega \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)\right.$
$\mathrm{H}_{2} \mathrm{O}$ is a much stronger base than Cl^{-}, so the equilibrium lies so far to the right K is not measured ($K \gg 1$).

Acid and Base Strength

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)
$$

Acetate is a stronger base than $\mathrm{H}_{2} \mathrm{O}$, so the equilibrium favors the left side $(K<1)$.

Autoionization of Water

- As we have seen, water is amphoteric.
- In pure water, a few molecules act as bases and a few act as acids.
$\mathrm{H}_{2} \mathrm{O}()+\mathrm{H}_{2} \mathrm{O}() \Longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(\mathrm{aq})$
- This is referred to as autoionization.

Ion-Product Constant

- The equilibrium expression for this process is

$$
K_{c}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- This special equilibrium constant is referred to as the ion-product constant for water, K_{w}.
- At $25^{\circ} \mathrm{C}, K_{w}=1.0 \times 10^{-14}$

pH

pH is defined as the negative base-10 logarithm of the hydronium ion concentration.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

pH

- In pure water,

$$
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}
$$

- Because in pure water $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left(1.0 \times 10^{-14}\right)^{1 / 2}=1.0 \times 10^{-7}
$$

pH

- Therefore, in pure water,

$$
\mathrm{pH}=-\log \left(1.0 \times 10^{-7}\right)=7.00
$$

- An acid has a higher $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$than pure water, so its pH is <7
- A base has a lower $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$than pure water, so its pH is >7.

Solution Type	$\left[\mathrm{H}^{+}\right](\mathbf{M})$	$\left[\mathrm{OH}^{-}\right](\boldsymbol{M})$	$\mathbf{p H}$ Value
Acidic	$>1.0 \times 10^{-7}$	$<1.0 \times 10^{-7}$	<7.00
Neutral	$=1.0 \times 10^{-7}$	$=1.0 \times 10^{-7}$	$=7.00$
Basic	$<1.0 \times 10^{-7}$	$>1.0 \times 10^{-7}$	>7.00

pH

These are the pH values for several common substances.

Other "p" Scales

- The " p " in pH tells us to take the negative log of the quantity (in this case, hydrogen ions).
- Some similar examples are
$>p O H-\log \left[\mathrm{OH}^{-}\right]$
$\Rightarrow p K_{w}-\log K_{w}$

Watch This!

Because

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=K_{w}=1.0 \times 10^{-14}
$$

we know that

$$
-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+-\log \left[\mathrm{OH}^{-}\right]=-\log K_{w}=14.00
$$

or, in other words,

$$
\mathrm{pH}+\mathrm{pOH}=\mathrm{p} K_{w}=14.00
$$

How Do We Measure pH?

- For less accurate measurements, one can use
> Litmus paper
- "Red" paper turns blue above $\sim \mathrm{pH}=8$
- "Blue" paper turns red below $\sim \mathrm{pH}=5$
>An indicator

How Do We Measure pH?

For more accurate measurements, one uses a pH meter, which measures the voltage in the solution.

Strong Acids

- You will recall that the seven strong acids are $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{3}$, and HClO_{4}.
- These are, by definition, strong electrolytes and exist totally as ions in aqueous solution.
- For the monoprotic strong acids,

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\text {acid }] .
$$

Strong Bases

- Strong bases are the soluble hydroxides, which are the alkali metal and heavier alkaline earth metal hydroxides $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}\right.$, and Ba^{2+}).
- Again, these substances dissociate completely in aqueous solution.

Dissociation Constants

- For a generalized acid dissociation,
$\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}() \Longrightarrow \mathrm{A}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$ the equilibrium expression would be

$$
K_{c}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

- This equilibrium constant is called the acid-dissociation constant, K_{a}.

Dissociation Constants

The greater the value of K_{a}, the stronger the acid.

	Structural Formula	Conjugate Base		Equilibrium Reaction

Calculating K_{a} from the pH

- The pH of a 0.10 M solution of formic acid, HCOOH , at $25^{\circ} \mathrm{C}$ is 2.38. Calculate K_{a} for formic acid at this temperature.
- We know that

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{COO}^{-}\right]}{[\mathrm{HCOOH}]}
$$

Calculating K_{a} from the pH

- The pH of a 0.10 M solution of formic acid, HCOOH , at $25^{\circ} \mathrm{C}$ is 2.38. Calculate K_{a} for formic acid at this temperature.
- To calculate K_{a}, we need the equilibrium concentrations of all three things.
- We can find $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, which is the same as [HCOO^{-}], from the pH .

Calculating K_{a} from the pH

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
2.38=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
-2.38=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{gathered}
$$

$$
\begin{gathered}
10^{-2.38}=10^{\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
4.2 \times 10^{-3}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]
\end{gathered}
$$

Calculating K_{a} from pH

Now we can set up a table...

[HCOOH$], \mathrm{M} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{M} \quad\left[\mathrm{HCOO}^{-}\right], \mathrm{M}$

Initially	0.10	0	0
Change	-4.2×10^{-3}	$+4.2 \times 10^{-3}$	$+4.2 \times 10^{-3}$
At Equilibrium	$0.10-4.2 \times 10^{-3}$ $=0.0958=0.10$	4.2×10^{-3}	4.2×10^{-3}

Calculating K_{a} from pH

$$
\begin{aligned}
K_{a} & =\frac{\left[4.2 \times 10^{-3}\right]\left[4.2 \times 10^{-3}\right]}{[0.10]} \\
& =1.8 \times 10^{-4}
\end{aligned}
$$

Calculating Percent Ionization

- Percent lonization $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {eq }}}{[\mathrm{HA}]_{\text {nitial }}} \times 100$
- In this example

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\text {eq }}=4.2 \times 10^{-3} \mathrm{M}} \\
& {[\mathrm{HCOOH}]_{\text {jintial }}=0.10 \mathrm{M}}
\end{aligned}
$$

Calculating Percent Ionization

$$
\begin{aligned}
\text { Percent lonization } & =\frac{4.2 \times 10^{-3}}{0.10} \times 100 \\
& =4.2 \%
\end{aligned}
$$

Calculating pH from K_{a}

Calculate the pH of a 0.30 M solution of acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, at $25^{\circ} \mathrm{C}$.
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}()=\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}($aq $)$
K_{a} for acetic acid at $25^{\circ} \mathrm{C}$ is 1.8×10^{-5}.

Calculating pH from K_{a}

The equilibrium constant expression is

$$
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]}
$$

Calculating pH from K_{a}

We next set up a table...

$$
\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right], M \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{M} \quad\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right], M
$$

Initially	0.30	0	0
Change	$-x$	$+x$	$+x$
At Equilibrium	$0.30-x \approx 0.30$	x	x

We are assuming that x will be very small compared to 0.30 and can, therefore, be ignored.

Calculating pH from K_{a}

Now,

$$
\begin{aligned}
1.8 \times 10^{-5} & =\frac{(x)^{2}}{(0.30)} \\
\left(1.8 \times 10^{-5}\right)(0.30) & =x^{2} \\
5.4 \times 10^{-6} & =x^{2} \\
2.3 \times 10^{-3} & =x
\end{aligned}
$$

Calculating pH from K_{a}

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log \left(2.3 \times 10^{-3}\right) \\
& =2.64
\end{aligned}
$$

Polyprotic Acids

- Have more than one acidic proton.
- If the difference between the K_{a} for the first dissociation and subsequent K_{a} values is 10^{3} or more, the pH generally depends only on the first dissociation.

Name	Formula	$\boldsymbol{K}_{a 1}$	$\boldsymbol{K}_{a 2}$	$\boldsymbol{K}_{a 3}$
Ascorbic	$\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{6}$	8.0×10^{-5}	1.6×10^{-12}	
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	5.6×10^{-11}	
Citric	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	7.4×10^{-4}	1.7×10^{-5}	4.0×10^{-7}
Oxalic	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	6.4×10^{-5}	
Phosphoric	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	6.2×10^{-8}	4.2×10^{-13}
Sulfurous	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	6.4×10^{-8}	
Sulfuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	Large	1.2×10^{-2}	
Tartaric	$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$	1.0×10^{-3}	4.6×10^{-5}	

Weak Bases

Bases react with water to produce hydroxide ion.

Weak Bases

The equilibrium constant expression for this reaction is

$$
K_{b}=\frac{[\mathrm{HB}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{B}^{-}\right]}
$$

where K_{b} is the base-dissociation constant.

Weak Bases

K_{b} can be used to find $\left[\mathrm{OH}^{-}\right]$and, through it, pH .

Base	Lewis Structure	Conjugate Acid	Equilibrium Reaction	K_{b}
Ammonia $\left(\mathrm{NH}_{3}\right)$		NH_{4}^{+}	$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$	1.8×10^{-5}
Pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$		$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}+\mathrm{OH}^{-}$	1.7×10^{-9}
Hydroxylamine ($\mathrm{H}_{2} \mathrm{NOH}$)		$\mathrm{H}_{3} \mathrm{NOH}^{+}$	$\mathrm{H}_{2} \mathrm{NOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{NOH}^{+}+\mathrm{OH}^{-}$	1.1×10^{-8}
Methylamine $\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)$		$\mathrm{NH}_{3} \mathrm{CH}_{3}{ }^{+}$	$\mathrm{NH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3} \mathrm{CH}_{3}^{+}+\mathrm{OH}^{-}$	4.4×10^{-4}
Hydrosulfide ion (HS ${ }^{-}$)	$\left[\begin{array}{ll} \mathrm{H} & -\mathrm{S} \\ \hline \end{array}\right]$	$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{HS}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{~S}+\mathrm{OH}^{-}$	1.8×10^{-7}
Carbonate ion $\left(\mathrm{CO}_{3}{ }^{2-}\right)$		$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCO}_{3}^{-}+\mathrm{OH}^{-}$	1.8×10^{-4}
Hypochlorite ion $\left(\mathrm{ClO}^{-}\right)$	$\left[\begin{array}{cc}\mathrm{CH}_{-7} & -\mathrm{C}^{+}\end{array}\right]^{-}$	HClO	$\mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HClO}+\mathrm{OH}^{-}$	3.3×10^{-7}

pH of Basic Solutions

What is the pH of a 0.15 M solution of NH_{3} ?
$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}() \quad \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q)$

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-5}
$$

pH of Basic Solutions

Tabulate the data.

	0.15	0	0
Initially	$0.15-x \approx 0.15$	x	x
At Equilibrium	$0.15-x$		

pH of Basic Solutions

$$
\begin{array}{r}
1.8 \times 10^{-5}=\frac{(x)^{2}}{(0.15)} \\
\left(1.8 \times 10^{-5}\right)(0.15)=x^{2} \\
2.7 \times 10^{-6}=x^{2} \\
1.6 \times 10^{-3}=x
\end{array}
$$

pH of Basic Solutions

Therefore,

$$
\begin{aligned}
{\left[\mathrm{OH}^{-}\right] } & =1.6 \times 10^{-3} \mathrm{M} \\
\mathrm{pOH} & =-\log \left(1.6 \times 10^{-3}\right) \\
& =2.80 \\
\mathrm{pH} & =14.00-2.80 \\
& =11.20
\end{aligned}
$$

K_{a} and K_{b}

Acid	K_{a}	Base	\boldsymbol{K}_{b}
HNO_{3}	$($ Strong acid $)$	$\mathrm{NO}_{3}{ }^{-}$	$($Negligible basicity)
HF	6.8×10^{-4}	$\mathrm{~F}^{-}$	1.5×10^{-11}
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	5.6×10^{-10}
$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.3×10^{-7}	HCO_{3}	2.3×10^{-8}
$\mathrm{NH}_{4}{ }^{-}$	5.6×10^{-10}	NH_{3}	1.8×10^{-5}
$\mathrm{HCO}_{3}{ }^{-}$	5.6×10^{-11}	$\mathrm{CO}_{3}{ }^{2-}$	1.8×10^{-4}
OH^{-}	(Negligible acidity)	O^{2-}	(Strong base)

K_{a} and K_{b} are related in this way:

$$
K_{a} \times K_{b}=K_{w}
$$

Therefore, if you know one of them, you can calculate the other.

Reactions of Anions with Water

- Anions are bases.
- As such, they can react with water in a hydrolysis reaction to form OH^{-}and the conjugate acid:

$$
\mathrm{X}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \rightleftharpoons \mathrm{HX}^{(a q)}+\mathrm{OH}^{-}(a q)
$$

Reactions of Cations with Water

Weak
electrostatic
interaction

- Cations with acidic protons

Strong electron

(like $\mathrm{NH}_{4}{ }^{+}$) will lower the pH of a solution.

- Most metal cations that are hydrated in solution also lower the pH of the solution.

Reactions of Cations with Water

Weak
electrostatic
interaction

Strong electron

- Attraction between nonbonding electrons on oxygen and the metal causes a shift of the electron density in water.
- This makes the O-H bond more polar and the water more acidic.
- Greater charge and smaller size make a cation more acidic.

Effect of Cations and Anions

1. An anion that is the conjugate base of a strong acid will not affect the pH .
2. An anion that is the conjugate base of a weak acid will increase the pH .
3. A cation that is the conjugate acid of a weak base will decrease the pH .

Effect of Cations and Anions

4. Cations of the strong Arrhenius bases will not affect the pH .
5. Other metal ions will cause a decrease in pH .
6. When a solution contains both the conjugate base of a weak acid and the conjugate acid of a weak base, the affect on pH depends on the K_{a} and K_{b} values.

Factors Affecting Acid Strength

| | GROUP | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | 4 A | 5 A | 6 A | 7 A | |
| Period 2 | CH_{4}
 No acid or
 base properties | NH_{3}
 Weak base | $\mathrm{H}_{2} \mathrm{O}$ | --1 | HF |
| Weak acid | | | | | |

Increasing acid strength

- The more polar the $\mathrm{H}-\mathrm{X}$ bond and/or the weaker the $\mathrm{H}-\mathrm{X}$ bond, the more acidic the compound.
- Acidity increases from left to right across a row and from top to bottom down a group.

Factors Affecting Acid Strength

Shift of electron density
In oxyacids, in which an OH is bonded to another atom, Y , the more

electronegative Y is, the more acidic the acid.

Acid	EN of \mathbf{Y}	$\boldsymbol{K}_{\boldsymbol{a}}$
HClO	3.0	3.0×10^{-8}
HBrO	2.8	2.5×10^{-9}
HIO	2.5	2.3×10^{-11}

Factors Affecting Acid Strength

For a series of oxyacids, acidity increases with the number of oxygens.

Factors Affecting Acid Strength

Resonance in the conjugate bases of carboxylic acids stabilizes the base and makes the conjugate acid more acidic.

Lewis Acids

- Lewis acids are defined as electron-pair acceptors.
- Atoms with an empty valence orbital can be Lewis acids.

Lewis Bases

- Lewis bases are defined as electron-pair donors.
- Anything that could be a Brønsted-Lowry base is a Lewis base.
- Lewis bases can interact with things other than protons, however.

