1	 is the oxidizing	agent in	the reaction	ı below.

$$Cr_2O_7^{2-} + 6S_2O_3^{2-} + 14H^+ \rightarrow 2Cr^{3+} + 3S_4O_6^{2-} + 7H_2O_1^{2-}$$

C)
$$S_2O_3^2$$

E)
$$S_4O_6^{2}$$

2) What is the oxidation number of manganese in the MnO
$$_4^{1-}$$
 ion?

C)
$$+4$$

E)
$$+5$$

- A) six-electron
- B) one-electron
- C) two-electron
- D) three-electron
- E) four-electron

- A) anode
- B) cathode
- C) voltaic cell
- D) oxidizing agent
- E) reducing agent

$$3MnO_4^-$$
 (aq) + $24H^+$ (aq) + $5Fe$ (s) $\rightarrow 3Mn^{2+}$ (aq) + $5Fe^{3+}$ (aq) + $12H_2O$ (I)

A)
$$2MnO_4^-$$
 (aq) + $12H^+$ (aq) + $6e^- \rightarrow 2Mn^{2+}$ (aq) + $3H_2O$ (I)

B)
$$Fe^{2+}$$
 (aq) $\rightarrow Fe^{3+}$ (aq) + e⁻

C) Fe (s)
$$\rightarrow$$
 Fe³⁺ (aq) + 3e⁻

D) Fe (s)
$$\rightarrow$$
 Fe²⁺ (aq) + 2e⁻

E)
$$MnO_4^-$$
 (aq) + $8H^+$ (aq) + $5e^- \rightarrow Mn^{2+}$ (aq) + $4H_2O$ (I)

- A) anode, salt bridge
- B) cathode, anode
- C) salt bride, anode
- D) anode, cathode
- E) salt bridge, cathode

7) The more	the value of E°red	, the greater the dr	iving force for reduc	tion.	7)
A) negative					
B) extensive					
C) exothermic					
D) positive					
E) endothermic					
Table 20.2					
Half-reaction	E° (V)				
Cr^{3+} (aq) + 3e ⁻ \rightarrow					
Fe^{2+} (aq) + $2e^{-} \rightarrow 1$	Fe (s) -0.440				
Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{3+}$	e ²⁺ (s) +0.771				
Sn^{4+} (aq) + 2e ⁻ \rightarrow 3					
8) The standard cell p	ootential (F°cou) for th	ne voltaic cell based	d on the reaction belo	ow is V	8)
o, The standard con p	voteritiai (E (GII) for ti	io voltato con basec	d of the reaction bere	V.	
Sn ²⁺ (aq) + 2	$2Fe^{3+}$ (aq) $\rightarrow 2Fe^{2+}$	(aq) + Sn ⁴⁺ (aq)			
A) +0.46	B) +0.617	C) +1.21	D) -0.46	E) +1.39	
A) +0.40	b) +0.011	C) +1.21	D) -0.40	L) +1.37	
9) The standard cell p	otential (E° _{cell}) for th	ne voltaic cell based	d on the reaction belo	ow is V.	9)
Cr (s) + 3F	Fe^{3+} (aq) \rightarrow 3Fe ²⁺ (a	aq) + Cr ³⁺ (aq)			
A) +1.51	B) +3.05	C) +2.99	D) +1.57	E) -1.45	
10) Correcion of iron is	rotorded by				10)
10) Corrosion of iron is		·			10)
A) high pH conditionsB) the presence of salts					
C) low pH condi					
•	ence of salts and high	pH conditions			
•	ence of salts and low	•			
11) What current (in A)) is required to plate (out 1.22 g of nickel	from a solution of N	li ²⁺ in 1.0 hour	11)
———— : A) 1.11	B) 4.01 × 10 ³	C) 65.4	D) 2.34	E) 12.9	
Ay 1.11	b) 4.01 ^ 10°	C) 03.4	D) 2.34	L) 12.7	
12) How many grams of Ca metal are produced by the electrolysis of molten CaBr ₂ using a current of					
30.0 amp for 10.0 h					
A) 448	B) 22.4	C) 0.0622	D) 112	E) 224	
13) How many grams (40)
,	of CuS are obtained h	v passing a curren	t of 12 A through a si	olution of CuSO ₄	13)
for 15 minutes	of CuS are obtained b ?	y passing a curren	t of 12 A through a so	olution of CuSO ₄	13)
for 15 minutes A) 3.6		y passing a curren C) 7.1	t of 12 A through a so D) 1.8	olution of CuSO ₄ E) 14	13)

14) Which element is oxidized in the reaction below?

14) _____

$$Fe(CO)_5(I) + 2HI(g) \rightarrow Fe(CO)_4I_2(s) + CO(g) + H_2(g)$$

- A) O
- B) Fe
- C) I
- D) C
- E) H

15) What is the coefficient of the permanganate ion when the following equation is balanced?

15) _____

$$MnO_4^- + Br^- \rightarrow Mn^{2+} + Br_2$$
 (acidic solution)

- A) 2
- B) 3
- C) 4
- D) 1
- E) 5

16) What is the coefficient of Fe³⁺ when the following equation is balanced?

16) _____

$$CN^- + Fe^{3+} \rightarrow CNO^- + Fe^{2+}$$
 (basic solution)

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

17) Which transformation could take place at the anode of an electrochemical cell?

17)

- A) $CO_2 \rightarrow C_2O_4^{2-}$
- B) $VO_2^+ \rightarrow VO^{2+}$
- C) $H_2AsO_4 \rightarrow H_3AsO_3$
- D) NO \rightarrow NO₃ $^-$
- E) $O_2 \rightarrow H_2O_2$

Tabl	ما	20	-	1
I abi	ı	20		ı

Half Reaction	E°(V)
F_2 (g) + 2e ⁻ \rightarrow 2F ⁻ (aq)	+2.87
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.359
$Br_2(I) + 2e^- \rightarrow 2Br^-(aq)$	+1.065
O_2 (g) + 4H ⁺ (aq) + 4e ⁻ \rightarrow 2H ₂ O (I)	+1.23
$Ag^+ + e^- \rightarrow Ag(s)$	+0.799
Fe^{3+} (aq) + $e^{-} \rightarrow Fe^{2+}$ (aq)	+0.771
I_2 (s) + 2e ⁻ \rightarrow 2I ⁻ (aq)	+0.536
$Cu^{2+} + 2e^{-} \rightarrow Cu$ (s)	+0.34
$2H^+ + 2e^- \rightarrow H_2(g)$	0
$Pb^{2+} + 2e^{-} \rightarrow Pb$ (s)	-0.126
$Ni^{2+} + 2e^{-} \rightarrow Ni$ (s)	-0.28
Li ⁺ + e ⁻ → Li (s)	-3.05

18) Which of the halogens in Table 20.1 is the strongest oxidizing agent?

18) _____

- A) F₂
- B) I₂
- C) Br₂
- D) Cl₂
- E) All of the halogens have equal strength as oxidizing agents.
- 19) Consider an electrochemical cell based on the reaction:

19)

$$2H^{+}$$
 (aq) + Sn (s) \rightarrow Sn²⁺ (aq) + H₂ (g)

Which of the following actions would not change the measured cell potential?

- A) addition of more tin metal to the anode compartment
- B) increasing the tin (II) ion concentration in the anode compartment
- C) increasing the pressure of hydrogen gas in the cathode compartment
- D) lowering the pH in the cathode compartment
- E) Any of the above will change the measured cell potential.
- 20) In the equation $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$, hydrogen gives up electrons and is a reductant.
- 20)

21) The electode where reduction occurs is called the anode.

21) _____

22) In a voltaic cell electrons flow from the anode to the cathode.

- ____
- 23) When the cell potential is negative in a voltaic cell the cell reaction will not proceed spontaneously.
- 23) _____
- 24) The standard reduction potential, E $_{red}^{O}$, is proportional to the stoichiometric coefficient.
- 24) _____
- 25) A positive number for maximum useful work in a spontaneous process (voltaic cell) indicates that the cell will perform work on its surroundings.
- 25) _____